Finding the Right Beat: Understanding Temporal Interference as a Means of Deep Brain Stimulation

Zachary Weisblatt

Authors:  Zach Weisblatt, Dr. Erin Patrick, Stephanie Cernera, Joshua Wong

Faculty Mentor: Dr. Erin Patrick

College:  Herbert Wertheim College of Engineering


Deep Brain Stimulation (DBS) is a proven neuromodular therapy for the treatment of select neurological disorders such as essential tremor (ET) and Parkinson’s Disease. However, the inherent risk and invasive nature of brain surgery, required for implanting DBS electrode leads, has motivated the search for safer, non-invasive methods of deep neural electrical stimulation. Recent works have suggested Temporal Interference (TI) stimulation as an emerging solution: high-frequency stimulus from two electrodes placed on the exterior of the scalp, intended to create a low-frequency interference pattern for a small region of neurons deep in the brain. Though this novel stimulus alternative could revolutionize neuromodular therapy, the underlying biophysics that enable this phenomenon are yet to be fully understood. This paper seeks to investigate the biophysical mechanisms of action responsible for TI stimulation through a computational modeling approach. We will demonstrate neural activation responses that follow the envelope of temporal interference stimulation for constant-diameter single fiber neurons, as well as for spatially mapped fiber tracts from select ET patient data.

Poster Pitch

Click the video below to view the student's poster pitch.


Click the image to enlarge.
4 Responses
  1. Mark Law

    Zach – long time since ProDev. I didn’t know you working with Dr. Patrick. We have a good collaboration on some other topics.

  2. Camille Hernandez

    Hi Zach! This was an interesting approach in order to address the issues with invasive brain procedures. Good work!